Use of Infrared therapy in physiotherapy

*What is infra-red ray?

~Infra-red rays are the electromagnetic wave whose wavelength is just below the red ray of the visible light.
Its wavelength is 750 nm-400000 nm.
~Infra-red rays is emitted by any hot object. It can be hot iron, hot metal, fire, burning charcoal. Sun ray also
has infra-red rays in it & that’s why it feels the heat.

*infrared therapy:

~treatment by exposure to various wavelengths of infrared radiation. Hot water bottles and heating pads of all
kinds emit longwave infrared radiation; incandescent lights emit shortwave infrared radiation. Infrared treatment
is performed to relieve pain and to stimulate circulation of blood.

~infrared therapy the use of infrared radiation to produce local heat. Used by physiotherapists as a local
treatment to relieve pain and reduce muscle spasm.The scientific evidence as to its effectiveness is poor: it
appears to have no greater benefit than other forms of heat therapy.

~infrared therapy heat therapy induced by electromagnetic waves of wavelength 7700-10000 nm;used to treat chronic
musculoskeletal injuries

*what is infra red lamp?

An infrared lamp is the means to give superficial heat therapy. Superficial heat therapy is effective in pain and
stiffness relieving.It is a simple instrument which has the lamp like structure fitted with red luminescent lamp
or bulb. This bulb emits red light which is hot or warm.This lamp which is used in the large Physiotherapy centre
is mounted on the stand whose height can be adjusted according to the body part to be treated. The one which is
meant for personal use is simple lamp.

Types of the infra-red lamp.

1: Non-luminous generator.
2: Luminous generator (Luminous infrared lamp.)

(1) Non-luminous generator:
As the name suggest it is a kind of machine which is designed such that it only produces infra-red rays without
any visible light

(2) Luminous generator (Luminous infrared lamp lamp):
The luminous generator produces infra-red rays with visible light. An incandescent bulb is used for it. the
luminous generator is more commonly used.


*The painful condition where the infrared lamp can be used:

~Neck pain: Neck pain with the stiffness of muscle around the neck.

~Shoulder pain.

~Frozen shoulder: Frozen shoulder also known as adhesive capsulitis,is a restriction in the movement of    the shoulder joint.

~Upper back pain: it may be due to muscular spasm or trigger points.

~Low back pain: Spasm of the low back muscle.

~Pain relief.

~It improves blood supply.

~It helps in relaxation of muscles.

*Common conditions where you can apply infrared lamp therapy is:

~Neck spasm.
~Cervical spondylitis.
~Frozen shoulder.
~Pain in and around shoulder.
~Low back ache.
~Chronic back strain.
~Piriformis syndrome (pain on the side of buttock).


1) Reproductive organs

2) Direct irradiation over the fetus or the uterus during pregnancy

3) Direct irradiation of eyes

4) Treatment of patients with idiopathic photophobia or abnormally high sensitivity to light

5) Direct irradiation of the thyroid glad and endocrine glands

6) Malignancy/Cancer (tumors or cancerous areas)

7) Patients that have been pre-treated with one or more photosensitizers

8) Growing children over Epiphyseal plate

(9)Over the metal implants.

(10)Knee replacement.

(11)Hip replacement.



~The purpose of infrared light therapy application is to achieve decrease in inflammation, pain control       and wound care and tissue repair.

*What is Infrared Light Therapy?

~Infrared light therapy is a revolutionary, non-invasive therapy method that is used to treat a variety of       common and complicated conditions. It helps accelerate healing using very short wavelengths of light        passed directly through human tissue.

~The light used in this physical therapy method is the red or near-infrared spectrum, which is just               above  visible light in the electromagnetic spectrum that we see with the human eye.

*How Can Infrared Light Therapy Help?

~Infrared light is made up of particles called photons that have special healing properties that activate         at  the cellular level. This means that your cells absorb the photons and make energy that helps speed       up healing.

~Infrared lamp
~The 250W infrared heat bulb emits relaxing and healing warmth, for high-standard cosmetic and               beauty treatments  and relief of muscular pain. Complete with a dimmer to regulate the intensity of            the  treatment. The 60cm strong and flexible arm makes accurate positioning very easy.

~The grill prevents accidental contact with the hot bulb and the double-walled shade guarantees that           you only heat the targeted body area. Simply the best lamp for infra-red heat treatments in                           professional beauty salons and spas.
~The heat intensity is fully adjustable and the unit is supplied complete with protective grilles and table

~High-standard Infrared Heat lamp, packed with many practical features:

*How does infrared light heal?:
~Infrared light therapy harnesses the healing power of infrared wavelengths of light. When infrared energy is delivered to injury sites and other painful areas, it dramatically increases circulation, reduces inflammation and promotes healing.


1) Place patient in position of comfort. The treatment will be performed by licensed Physical Therapist, or by PT Aid, supervised by a PT.

2) Turn on Solaris 700 and the Light Therapy and hit the start to warm up the probe. Check the intensity measured in J/cm2 and set the treatment time to desired time.

3) Before beginning each treatment, the skin area and the probe should be carefully cleaned to avoid skin irritation or infection. Clean the probe with alcohol or some other standard sanitizing agent.

4) Place the Light Probe on the skin over the treatment area. Maintain constant contact with the skin during the  treatment. Do not move the probe back and forth or in some other manner over the target area, hold the probe still during the set treatment time.

5) If the treatment area is larger than the size of the probe, then areas equal in size to the probe should be treated one at a time until the entire area is covered.

6) If treating over wound, the wound area must be cleaned carefully and covered with a thin, sanitized, clear plastic to avoid cross contamination. With the clear plastic in place the probe may be applied directly over the wound, but without exerting undue pressure on the wound. An alternative approach is to treat the periphery of the wound, one spot at a time, until the entire circumference of the wound is covered.

7) When the treatment is complete (timer clicks off), wait a few seconds and treat the next area.


~The IR unit developed by MSCT Infrared Wraps Inc is light, portable and designed to be worn on a belt. It is powered by a small, rechargeable battery and is claimed to be 99% efficient in converting electricity to IR energy.

~It contains an IR-emitting element in a unique design with an IR grid and buzz bars down each side to deliverthe electricity, converting it to IR energy at a wavelength of 800 nm to 1200 nm.

~This instrument has met safety standards for portability and was registered with the Food and Drug Administration as a therapeutic device in 2003. The unit used in the present study (Figure 1) contained two IR units and two batteries housed in a sturdy lumbar belt.

~The batteries require recharging every 24 h and were then functional for 8 h to 10 h per day. The IR output was reliable at 800 nm to 1200 nm of wavelength, and there was an automatic shut-off if the  temperature rose to 42°C. This feature was lacking in IR laser units, which therefore could cause thermal injury.
~The infrared lamp is very beneficial in many types of musculoskeletal pain. This is why the use of infrared lamp in the home is gaining popularity.

*Infrared lamp for thermotherapy:

~The therapeutic application of heat is called as thermotherapy. The infrared lamp is an instrument to give thermotherapy.

~It conducts heat on to our body via radiation.

~It comes in variety of types with different shapes and size. With the advent of technology, it is also availablein a portable variety.

~The portable Infrared lamp has become very popular and people are keeping it at home for their need.

~The infrared lamp looks like an normal lamp with a bulb emitting visible red light.

~It’s not a normal red light that emits from red neon bulb. This light ray that emits from infrared lamp consists of “infrared rays”.

*What is Infrared Radiation?

~The light we see with our eyes is really a very small portion of what is called the “Electromagnetic Spectrum.” The Electromagnetic Spectrum includes all types of radiation – from the X-rays used at hospitals, to radio waves used for communication, and even the microwaves you cook food with.

~Radiation in the Electromagnetic Spectrum is often categorized by wavelength. Short wavelength radiation is of the highest energy and can be very dangerous- Gamma, X-rays and ultraviolet are examples of short wavelength radiation. Longer wavelength radiation is of lower energy and is usually less harmful -examples include radio,microwaves and infrared.

~A rainbow shows the optical (visible) part of the Electromagnetic Spectrum and infrared (if you could see it) would be located just beyond the red side of the rainbow.

*CIE division scheme:

~The International Commission on Illumination (CIE) recommended the division of infrared radiation into the following three bands:[14]

Abbreviation             Wavelength            Frequency
(0.7 µm – 1.4 µm)          215 THz –         430 THz

1400 nm – 3000 nm
(1.4 µm – 3 µm)             100 THz –        215 THzs

3000 nm – 1 mm
(3 µm – 1000 µm)            300 GHz –   100 THz

~Near-infrared: from 0.7 to 1.0 µm (from the approximate end of the response of the human eye to that of silicon).

~Short-wave infrared: 1.0 to 3 µm (from the cut-off of silicon to that of the MWIR atmospheric window). InGaAs  covers to about 1.8 µm; the less sensitivelead salts cover this region.

~Mid-wave infrared: 3 to 5 µm (defined by the atmospheric window and covered by Indium antimonide [InSb] and HgCdTe and partially by lead selenide [PbSe]).

~Long-wave infrared: 8 to 12, or 7 to 14 µm (this is the atmospheric window covered by HgCdTe and microbolometers).

~Very-long wave infrared (VLWIR) (12 to about 30 µm, covered by doped silicon).

~Infrared radiation (IR) is electromagnetic radiation (EMR) with longer wavelengths than those of visible light, and is therefore generally invisible to the human eye (although IR at wavelengths up to 1050 nm from specially pulsed lasers can be seen by humans under certain conditions [1][2][3][4]). It is sometimes called infrared light .

~IR wavelengths extend from the nominal red edge of the visible spectrum at 700 nanometers (frequency 430 THz), to 1 millimeter (300 GHz)[5] Most of the thermal radiation emitted by objects near room temperature is infrared. Like all EMR, IR carries radiant energy, and behaves both like a wave and like its quantum particle, the photon.

~Infrared was discovered in 1800 by astronomer Sir William Herschel, who discovered a type of invisible radiation in the spectrum lower in energy than red light, by means of its effect on a thermometer.[6] Slightly more than half of the total energy from the Sun was eventually found to arrive on Earth in the form of infrared.
~The balance between absorbed and emitted infrared radiation has a critical effect on Earth’s climate.

~Infrared radiation is emitted or absorbed by molecules when they change their rotational-vibrational movements. It excites vibrational modes in a molecule through a change in the dipole moment, making it a useful frequency range for study of these energy states for molecules of the proper symmetry. Infrared spectroscopy examines absorption and transmission of photons in the infrared range.

~Infrared radiation is used in industrial, scientific, military, law enforcement, and medical applications.
Night-vision devices using active near-infrared illumination allow people or animals to be observed without the observer being detected.

~Infrared astronomy uses sensor-equipped telescopes to penetrate dusty regions of space such as molecular clouds, detect objects such as planets, and to view highly red-shifted objects from the early days of the universe. Infrared thermal-imaging cameras are used to detect heat loss in insulated systems, to observe changing blood flow in the skin, and to detect overheating of electrical apparatus.

~Extensive uses for military and civilian applications include target acquisition, surveillance, night vision, homing, and tracking. Humans at normal body temperature radiate chiefly at wavelengths around 10 µm (micrometers)Non-military uses include thermal efficiency analysis, environmental monitoring, industrial facility inspections,detection of grow-ops, remote temperature sensing, short-range wireless communication, spectroscopy, and weather forecasting.

Use Of Ultrasound in Physiotherapy :

*Introduction : 

Ultrasound Use in Physiotherapy

Therapeutic ultrasound is a modality that has been used by physiotherapists. Ultrasound is applied using the head of an ultrasound probe that is placed in direct contact with your skin via a transmission coupling gel.It is mainly used for its non-thermal effect where high frequency sound waves cause vibrations and movement of cellular fluids. benefits of ultrasound  therapy include improving the healing rate of certain soft tissues.Ultrasound (US) is a form of  MECHANICAL energy, not electrical energy.Mechanical vibration at increasing frequencies is known as sound energy. The normal human sound range is from  16Hz to something approaching 15-20,000 Hz (in children and young adults). Beyond this upper limit, the mechanical vibration is known as ULTRASOUND.  The frequencies used in therapy are typically between 1.0 and 3.0 MHz (1MHz = 1 million cycles persecond).Ultrasonic therapy is treatment given using ultrasound wave emitted through aultrasonicc machine.Ultrasound wave, when given in a controlled condition has found to produce physiological effects in our  body which cures many ailments. Ultrasound is actually a sound wave whose frequency is higher than the frequency of audible sound wave.It means that there is certain range of sound wave frequency which human ear can hear. When the frequency exceed this audible range than we call it as ultrasound wave.


~ increases healing rates

~ tissue relaxation

~ tissue heating

~ increases local blood flow

~ scar tissue breakdown.

The effect of ultrasound via an increase in local blood flow can be used to help reduce local swelling and chronic inflammation,promote bone fracture healing.Ultrasound can also be used to achieve phonophoresis. This is a non-invasive way of administering medications to tissues below the skin; perfect forpatients who are uncomfortable with injections.Stimulate the production of collagen (the main protein in tendons and ligaments) during tissue healing.

*Conditions treated with US:(indications)

~ inflammation(Bursitis or tendonitis)

~ chronic pain

~ Muscle Strain and tears

~ Osteoarthritis

~ ligament and tendon injuries

~ non-acute joint swelling and muscle spasm.

~ Tightness or contractures (to improve range of motion)

~ Frozen shoulder

~ Wound healing

*Which body ailment we can use ultra-sonic therapy?

~ Muscle pain.

~ Trigger points.

~ Soften the surgical scar.

~ Softening the tendon after tendon transplant.

~ Plantar fascitis.

~ Carpal tunnel syndrome.

*What is the condition where you need to avoid it?

~ Tumor.

~ Pregnancy.

~ Over the metal implants.

~ Knee replacement.

~ Hip replacement.

~ Pacemaker.

~ Eyes.


~ Directly on open wounds or active infections

~ Over metastatic lesions

~ On patients with impaired sensation

~ Directly on metal implants

~ Near a pacemaker or any other device that generates a magnetic field

~ During pregnancy (except in the instance of diagnostic sonography)

~ Additionally, ultrasound should not be applied over: ~ The eye ~ The gonads ~ Active epiphysis in children.

precautions :

~Always use the lowest intensity which produces a therapeutic response

~The head of the applicators should be moving throughout the treatment

.~The ultrasound beam (treatment head) should be perpendicular to the treatment area for best results.

~All parameters (intensity, duration, and mode) need to be considered carefully for desired therapeutic effects. Consider using the lowest intensity to   produce a therapeutic response.

*How Does an Ultrasound Work? :


Effect of ultrasound

~The ultrasound waves are generated by a piezoelectric effect caused by the vibration of crystals within the head of the probe. The ultrasound waves that  pass through the skin cause a vibration of the local soft tissues. This vibration or cavitation can cause a deep heating locally though usually no sensation  of heat will be felt by the patient. In situations where a heating effect is not desirable, such as a fresh injury with acute inflammation, the ultrasound  can be pulsed rather than continuously transmitted.

*Therapuetic effect of Us:

Ultrasound Treatment

~The therapeutic effects of US are generally divided into: THERMAL & NON-THERMAL.

(1) In thermal mode, US will be most effective in heating the dense collagenous tissues and will require a relatively high intensity, preferably in continuous mode to achieve this effect.Many papers have concentrated on the thermal effectiveness of ultrasound, and much as it can be used effectively in this way when an appropriate dose is selected (continuous mode >0.5 W cm-2), the focus of this paper will be on the non thermal effects.
~It is too simplistic to assume that with a particular treatment application there will either be thermal or non thermal effects. It is almost inevitable that both will occur, but it is furthermore reasonable to argue that the dominant effect will be influenced by treatment parameters, especially the mode ofapplication i.e. pulsed or continuous

(2) The non-thermal effects of US are now attributed primarily to a combination of CAVITATION and  ACOUSTIC STREAMING. There appears to be little by way of convincing evidence to support the notion of MICROMASSAGE though it does sound rather appealing.

*CAVITATION in its simplest sense relates to the formation of gas filled voids within the tissues & body fluids. There are 2 types of cavitation – STABLE  & UNSTABLE which have very different effects.


Effect of cavitation

(1)STABLE CAVITATION : does seem to occur at therapeutic doses of US.  This is the formation & growth of gas bubbles by accumulation of dissolved gas in   the medium.They take apx. 1000 cycles to reach their maximum size. The `cavity’ acts to enhance the acoustic streaming phenomena (see below) & as such   would appear to be beneficial.

(2)UNSTABLE (TRANSIENT) CAVITATION :is the formation of bubbles at the low pressure part of the US cycle. These bubbles then collapse very quickly  releasing a large amount of energy which is detrimental to tissue viability.   There is no evidence at present to suggest that this phenomenon occurs at therapeutic levels if a good technique is used. There are applications of US  that deliberately employ the unstable cavitation effect (High Intensity Focussed Ultrasound or HIFU) but it is beyond the remit of this summary.

*ACOUSTIC STREAMING is described as a small scale eddying of fluids near a vibrating structure such as cell membranes & the surface of stable cavitation  gas bubble (Dyson & Suckling 1978). This phenomenon is known to affect diffusion rates & membrane permeability. Sodium ion permeability is altered   resulting in changes in the cell membrane potential. Calcium ion transport is modified which in turn leads to an alteration in the enzyme control mechanisms  of various metabolic processes, especially concerning protein synthesis & cellular secretions.

Ultrasonic cavitation

*Ultrasound waves:

~FREQUENCY –  the number of times a particle experiences a complete compression/rarefaction cycle in 1 second. Typically 1 or 3 MHz (though there are  devices which operate in the kHz range – see comments on Low Frequency / Longwave Ultrasound at the end of this paper).
~WAVELENGTH –  the distance between two equivalent points on the waveform in the particular medium. In an ‘average tissue’ the wavelength @ 1MHz would be  1.5mm and @ 3 MHz would be 0.5 mm.
~VELOCITY –  the velocity at which the wave (disturbance) travels through the medium. In a saline solution, the velocity of US is approximately 1500 m   sec-1 compared with approximately 350 m sec-1 in air (sound waves can travel more rapidly in a more dense medium). The velocity of US in most tissues is   thought to be similar to that in saline.
~These three factors are related, but are not constant for all types of tissue. Average figures are most commonly used to represent the passage of US in   the tissues. Typical US frequencies from therapeutic equipment are 1 and 3 MHz though some machines produce additional frequencies (e.g. 0.75 and 1.5 MHz)  and the ‘Longwave’ ultrasound devices operate at several 10’s of kHz (typically 40-50,000Hz – a much lower frequency than ‘traditional US’ but still  beyond human hearing range.
~The mathematical representation of the relationship is V = F.l   where V = velocity, F = frequency and l is the wavelength.
~Ultrasound Beam, Near Field, Far Field and Beam Non Uniformity

~The US beam is not uniform and changes in its nature with distance from the transducer. The US beam nearest the treatment head is called the NEAR field,  the INTERFERENCE field or the Frenzel zone. The behaviour of the US in this field is far from regular, with areas of significant interference. The US   energy in parts of this field can be many times greater than the output set on the machine (possibly as much as 12 to 15 times greater). The size (length)  of the near field can be calculated using r2/l where r= the radius of the transducer crystal and l = the US wavelength according to the frequency being  used (0.5mm for 3MHz and 1.5mm for 1.0 MHz).

~The result of the combined effects of stable cavitation and acoustic streaming is that the cell membrane becomes ‘excited’ (up regulates), thus increasing  the activity levels of the whole cell. The US energy acts as a trigger for this process, but it is the increased cellular activity which is in effect  responsible for the therapeutic benefits of the modality.

*Ultrasound frequency:

~There is two different form of ultrasound frequency used for therapy purpose. One is 1 MHz frequency and another is 3 MHz. This two different frequency  is generated by two different ultrasound head . depending on the site of body illness the types of frequency is selected.
~1 MHz is used of treating deeper tissues and 3 MHz is used to treat superficial tissues.

ultrasound effect

*How ultrasound is generated?

A typical ultrasound machine consists of a machine with all its control switches. It is connected to a transducer head through a thick wire.From the machine we can control the intensity and frequency of ultrasound generated. It is adjusted according to the need of patient. But, it is the transducer head which comes in direct contact with the patient body. This transducer head produces the wave.The transducer head consists of a special material which has piezoelectric properties. It means when a high frequency electric current passes through this material it compresses and expands with the wave of alternating current. When this material expands, it pushes the substance in front of it which produces compression phase. when it contracts it rarefies  the substance in front of it which in turns produces rarefaction phase.So, there is continuous production of wave with alternate compression and  rarefaction phase. The following animation makes this point clearer.

Sound waves are LONGITUDINAL waves consisting of areas of COMPRESSION and RAREFACTION. Particles of a material, when exposed to a sound wave will oscillate about a fixed point rather than move with the wave itself. As the energy within the sound wave is passed to the material, it will cause oscillation of the particles of that material. Clearly any increase in the molecular vibration in the  tissue can result in heat generation, and ultrasound  can be used to produce thermal changes in the tissues.

*Ultrasound Transmission through the Tissues:

All materials (tissues) will present an impedance to the passage of sound waves. The specific impedance of a tissue will be determined by its density and  elasticity. In order for the maximal transmission of energy from one medium to another, the impedance of the two media needs to be as similar as possible. Clearly in the case of US passing from the generator to the tissues and then through the different tissue types, this can not actually be achieved.The greater the difference in impedance at a boundary, the greater the reflection that will occur, and therefore, the smaller the amount of energy that will be transferred.  The difference in impedance is greatest for the steel/air interface which is the first one that the US has to overcome in order to reach the tissues. To  minimise this difference, a suitable coupling medium has to be utilised. If even a small air gap exists between the transducer and the skin the proportion  of US that will be reflected approaches 99.998% which means that there will be no effective transmission.
~The absorption of US energy follows an exponential pattern – i.e. more energy is absorbed in the superficial tissues than in the deep tissues. In order for energy to have an effect it must be absorbed, and at some point this must be considered in relation to the US dosages applied to achieve certain effects Because the absorption (penetration) is exponential, there is (in theory) no point at which all the energy has been absorbed, but there is certainly a  point at which the US energy levels are not sufficient to produce a therapeutic effect. As the US beam penetrates further into the tissues, a greater  proportion of the energy will have been absorbed and therefore there is less energy available to achieve therapeutic effects. The half value depth is often quoted in relation to US and it represents the depth in the tissues at which half the surface energy is available. These will be different for each tissue and also for different US frequencies. The table below gives some indication of typical (or average) half value depths for therapeutic ultrasound.

1 MHz               3 MHz

Muscle                         9.0 mm             3.0 mm

Fat                               50.0 mm          16.5 mm

Tendon                        6.2 mm              2.0 mm
~As it is difficult, if not impossible to know the thickness of each of these layers in an individual patient, average half value depths are employed for  each frequency:

3 MHz      2.0 cm

1 MHz      4.0 cm

~These values (after Low & Reed) are not universally accepted (see Ward 1986) and some research (as yet unpublished)suggests that in the clinical environment they may be significantly lower.

Depth (cm)                           3 MHz       1 MHz

2                                             50%

4                                             25%              50%


8                                               25

~To achieve a particular US intensity at depth, account must be taken of the proportion of energy which has been absorbed by the tissues in the more  superficial layers. The table gives an approximate reduction in energy levels with typical tissues at two commonly used frequencies, and more detailed information is found in the dose calculation material.

~As the penetration (or transmission) of US is not the same in each tissue type, it is clear that some tissues are capable of greater absorption of US than  others. Generally, the tissues with the higher protein content will absorb US to a greater extent, thus tissues with high water content and low protein  content absorb little of the US energy (e.g. blood and fat) whilst those with a lower water content and a higher protein content will absorb US far more  efficiently. Tissues can be ranked according to their relative tissue absorption and this is critical in terms of clinical decision making.

*Best absorption in tendon,ligament,fascia,joint capsule and scar tissue:

~Although cartilage and bone are at the upper end of this scale, the problems associated with wave reflection mean that the majority of US energy striking  the surface of either of these tissues is likely to be reflected. The best absorbing tissues in terms of clinical practice are those with high collagen   content – LIGAMENT, TENDON, FASCIA, JOINT CAPSULE, SCAR TISSUE.   The application of therapeutic US to tissues with a low energy absorption capacity is less likely to be effective than the application of the energy into   a more highly absorbing material.
~The physiological effects of ultrasound are almost identical to those of Pulsed Shortwave and Laser therapy – the key difference however, is that ultrasound  energy is preferentially absorbed in different tissue to the other modalities – as summarised in the adjacent diagram.

* pulsed ultrasound:-

~Low-intensity pulsed ultrasound (LIPUS) is a medical technology, generally using 1.5 MHz frequency pulses, with a pulse width of 200 µs, repeated at 1 kHz,  at a spatial average and temporal average intensity of 30 mW/cm2. As of 2009 research for the use of LIPUS to treat soft tissue injuries were in the early  stages.Until recently, the pulse duration (the time during which the machine is on) was almost exclusively 2ms (2 thousandths of a second) with a variable  off period. Some machines now offer a variable on time though whether this is of clinical significance has yet to be determined. Typical pulse ratios are  1:1 and 1:4 though others are available (see dose calculations). In 1:1 mode, the machine offers an output for 2ms followed by 2ms rest. In 1:4 mode, the  2ms output is followed by an 8ms rest period.
~Low intensity pulsed ultrasound has been proposed as a therapy to support bone healing after fractures, osteotomies, or delayed healing.   The effects of pulsed US are well documented and this type of output is preferable especially in the treatment of the more acute lesions. Some machines  offer pulse parameters that do not appear to be supported from the literature (e.g. 1:9; 1:20). Some manufacturers describe their pulsing in terms of a   percentage rather than a ratio (1:1 = 50%  1:4 = 20% etc). The proportion of time that the machine is ON compared with OFF is a relevant factor in dosage  calculations and further details are included in the dose calculation support material.

*Pulse Frequency:

  ~A point of confusion amongst many therapists is the ‘frequency’ facility offered on some ultrasound machines. The pulse ratio (duty cycle) is at say 1:4   (20%), but there is an option to alter the pulse frequency (i.e. how many ultrasound pulses are delivered per second). This is achieved by adjusting the   DURATION of the pulses. Typically, these are at 2ms, thus on a 1:4 ratio, the machine is ON for 2ms and then OFF for 8ms. It takes 10ms to complete one   ‘cycle’ (ON : OFF), and thus 100 such cycles are completed in a second, so the machine claims to deliver ultrasound at 100Hz. If the pulse duration is   increased from 2ms to say 4ms, then on a 1:4 ratio, the machine will be ON for 4ms followed by 16ms OFF, thus taking 20ms to complete a cycle and hence  only 50 such cycles being delivered per second and the setting on the machine will be for ultrasound pulsing at 50Hz. There is no evidence that I can find   to suggest that one mode of operation has any clinical advantage over another. The 2ms pulse time is ‘normal’ and is encountered on most machines (which   effectively means that 100 pulses of ultrasound energy will be delivered per second.


~During the inflammatory phase, US has a stimulating effect on the mast cells, platelets, white cells with phagocytic roles and the macrophages   For example, the application of ultrasound induces the degranulation of mast cells, causing the release of arachidonic acid which itself is a precursor   for the synthesis of prostaglandins and leukotreine – which act as inflammatory mediators. By increasing the activity of these cells, the overall influence  of therapeutic US is certainly pro-inflammatory rather than anti-inflammatory. The benefit of this mode of action is not to ‘increase’ the inflammatory   response as such (though if applied with too greater intensity at this stage, it is a possible outcome , but rather to act as an ‘inflammatory optimiser’  The inflammatory response is essential to the effective repair of tissue, and the more efficiently the process can complete, the more effectively the   tissue can progress to the next phase (proliferation). Studies which have tried to demonstrate the anti inflammatory effect of ultrasound have failed to   do so (e.g.El Hag et al 1985 Hashish 1986, 1988), and have suggested that US is ineffective. It is effective at promoting the normality of the inflammatory  events, and as such has a therapeutic value in promoting the overall repair events . A further benefit is that the inflammatory chemically mediated events   are associated with stimulation of the next (proliferative) phase, and hence the promotion of the inflammatory phase also acts as a promoter of the  proliferative phase.


~During the proliferative phase (scar production) US also has a stimulative effect (cellular up regulation), though the primary active targets are now the  fibroblasts, endothelial cells and myofibroblasts.These are all cells that are normally active during scar production and US is therefore pro-proliferative  in the same way that it is pro-inflammatory – it does not change the normal proliferative phase, but maximises its efficiency – producing the required scar  tissue in an optimal fashion.demonstrated that low dose pulsed ultrasound increases protein synthesis and several research groups have  demonstrated enhanced fibroplasia and collagen synthesis.Recent work has identified the critical role of numerous growth factors in relation to tissue   repair, and some accumulating evidence has identified that therapeutic US has a positive role to play in this context .



Effect of ultrasound on bone

~During the remodelling phase of repair, the somewhat generic scar that is produced in the initial stages is refined such that it adopts functional   characteristics of the tissue that it is repairing. A scar in ligament will not ‘become’ ligament, but will behave more like a ligamentous tissue. This   is achieved by a number of processes, but mainly related to the orientation of the collagen fibres in the developing scar.and also to the change in   collagen type, from predominantly Type III collagen to a more dominant Type I collagen. The remodelling process is certainly not a short duration phase –   research has shown that it can last for a year or more – yet it is an essential component of quality repair.   The application of therapeutic ultrasound can influence the remodelling of the scar tissue in that it appears to be capable of enhancing the appropriate   orientation of the newly formed collagen fibres and also to the collagen profile change from mainly Type III to a more dominant Type I construction, thus   increasing tensile strength and enhancing scar mobility .Ultrasound applied to tissues enhances the functional capacity of the scar tissues.The application   of ultrasound during the inflammatory, proliferative and repair phases is not of value because it changes the normal sequence of events, but because it has  the capacity to stimulate or enhance these normal events and thus increase the efficiency of the repair phases.It would appear that if a tissue is  repairing in a compromised or inhibited fashion, the application of therapeutic ultrasound at an appropriate dose will enhance this activity. If the tissue  is healing ‘normally’, the application will, it would appear, speed the process and thus enable the tissue to reach its endpoint faster than would   otherwise be the case. The effective application of ultrasound to achieve these aims is dose dependent.